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DEFORMATIONS OF CLOSED SPACE CURVES

E. A. FELDMAN

1. Introduction

In this note we will be interested in closed space curves, that is C* (k > 2)
immersions of S' into R®. We say a space curve is non-degenerate if the
square of the curvature is never zero. This non-degeneracy condition is the
classical hypothesis used to insure the existence of the moving Frenet frame
along the curve. The question we would like to ask is the following one.
Given any two closed non-degenerate space curves, when are they homotopic
through a homotopy composed entirely of closed non-degenerate space
curves? More precisely we want to study the space N of non-degenerate
closed space curves, considered as a subspace of C*(S', R®%), the C* maps
from $! into R®, with the C*-topology (k > 2) [4]. We ask: what are the arc
components of N? A continuous path in N will be called a non-degenerate
homotopy.

It will be convenient to make all homotopies based. To make this specific
let us first define the Frenet frame for y(s) € N. This is done by fixing the sign
of the curvature to be positive, and letting the principal normal t,(s) be de-
fined by dt,(s)/ds = k(s)t,(s), where s is arc-length parameter, #,(s) = dy(s) /ds
is the unit tangent vector, and k(s) is the curvature of the given space curve
7. One then defines the binormal vector t,(s) by the formula #,(s) = #,(s) X 2,(s).
Now let us fix a base point 6, € §*, and let

Ny={reN|r@) = 0, t.(8) = e;, 1,(6;) = &, 1:(6;) = &3},

where (2, t,, t;) is the Frenet frame of y, and the e; are the unit coordinate
vectors of R® (i.e., e; = (1,0, 0) etc.). An element of N, will be called a
based non-degenerate curve, and a continuous path in N, a based non-degen-
erate homotopy. By using rotations and translations the arc components of
N are determined by those of N,;, because the group of rigid motions is con-
nected. Given any 7 € N,, we define F(y): §* — SO(3), by associating to each
point of y, its Frenet frame, where SO(3) is the special orthogonal group.
We see F(y) is of class C*~%, and F(y)(6,) = f, = (e, €,, €;) € SO(3). Our main
result is the following theorem.
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Theorem I. Let y and neN,. Then y and 7 are based non-degenerately
homotopic if and only if F(y) is based homotopic to F(y) (that is they deter-
mine the same element of 7,(SO(3), f,)).

The “if” part is obvious; hence the main task will be to show the con-
verse. We will now apply the theorem to get the desired classification.

It is well known that z,(SO(3), f,) = Z, and that the generator is represented
by the curve of 3-frames f(#) = (£,(6), f.(6), e;) where f,(6) = (cos 6, sin@, 0),
and f,(f) = (— sin 6, cos §, 0) for 0 < g <2z (see [6]). Let a(f) = (sin 4,
1 —cos@,0). Then aeN,, and F(a)(@) = f(#). Therefore we see N, has two
connected components, the first determined by traversing the circle « once,
the second by traversing « twice (i.e., by a(26),0 < 6 < 2z). Hence, if we
deform the latter curve a bit so it is an embedded circle, we see that any
7 € N(N,) is (based) non-degenerately homotopic to either the circle or curve
2 pictured below.

Curve 2

Besides the intrinsic geometric interest of this problem, it is also the most
elementary open part of the following more general problem. Let X be a
Riemanian manifold. We say an immersed circle is non-degenerate if the
geodesic curvature never vanishes. When are two non-degenerate immersed
circles homotopic through non-degenerate immersions? Let us restrict our-
selves to curves which are “based”, that is, fix §,¢.$*, x,¢ X, f, and f, mutu-
ally perpendicular unit tangent vectors at x, and restrict ourselves to
f: 8 — X, such that f(6,) = x,, and the unit tangent (unit principal normal)
to f at 4, is f,(f,). By associating with each #¢ S* the unit tangent and unit
principal normal of f at f(§) one obtains a curve in V,(X) the orthonormal
two frame bundle of X. Hence the non-degenerate immersion f defines an
element V(f) of =,(V.(X), f,), where f, = (x,, f,, f.). If f and g are based non-
degenerate immersions of $* in X, is the condition that V(f) = V(g) sufficient
to insure that f is based nondegenerate regularly homotopic to g7 When
dim X > 4 it is indeed the case since =y(V,,) = 0 (kK > 4) where V,; is the
Stiefel manifold of 2 frames in k-space. Therefore 7,(Vo(X), f,) = =.(X, x,).
We showed in [1] that in this case f and g are (based) non-degenerately
homotopic if and only if they were (based) homotopic. This leaves only two
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and there dimensional manifolds, and this note supplies an affirmative answer
to the question in case X = R?, since V, , = SO(3). For X = R?, the question
is quite easily answered. The winding number (normal degree) is the only in-
variant, and every winding is realized except of course 0. The proof is much
easier than that of the Whitney-Graustein theorem [8], since the positivity
(negativity) of the curvature guarantees that the tangent map is a covering
map of $* by S, If we take the above question as a conjecture I would as-
sume it is true for dim X = 3, and false for dim X = 2, One can clearly ask
the analogous questions which arise by demanding that higher and higher
order curvatures never vanish.

Finally I would like to thank R. Sacksteder for making an essential sim-
plification in the proof of Fenchel’s theorem [3], and C. Weaver for pointing
out a way of simplifying the original proof of this theorem.

2. The factorization and spherical curves

Let us first identify SO(3), V,,, and T,(5?), the unit tangent circle bundle of
$2, as follows. Note for any 3-frame (f, f., f;) ¢ SO3), f; = f, X f,, and
(f1, f2) € V,;. Thus we can identify V, ; and SO(3). We then view (f,, f.) € V,;
as defining a point f, €$% and a unit tangent vector to S at f, by parallel
translating the foot of f, from 0 to f,. With the above identifications in mind
we will use these three spaces interchangeably. Now let us fix 4,¢S*, and
fo = (e, &) e V,;, where e; is the i-th coordinate vector. Let V, = {fe C*~*
(8, V.2 1 f(8e) = fo}. Then by associating to each y € N, the moving 2-frame
defined by its unit tangent and principal normal vectors, we have defined a

F continuous map F: N, — V,, where V, is given the

V, C** topology. Let I, = {2e C*-}(S*, §%) |4 is an im-

mersion, A(6,) = e,, and 2 (6,)/ | X'(6,) | = e.}, and give

I, the C*-* topology. Then we can factor F through I,

G S as follows. Let 7 ¢ N, and set G(r)(@) = 1(8)/ | 7 (6)| .

We could define G(y) for an arbitrary C* space curve

1, r; however G(y) is an immersion if and only if 7 is

non-degenerate. G clearly maps &, into [, continu-

ously. Let ¢, and set S(A)(8) = (A(6), Y (B)/ |2 (6)!). Then S is continuous
and F = SoG. We now quote the following theorem of Smale [5].

Theorem S. Let 2 and e l,. Then 2 and ] are based regularly homotopic
(i.e. lie in the same arc component of 1), if and only if S(2) and S(3) repre-
sent the same element of n,(V,,; fo). If S(A) is homotopic to S(3), and further-
more there exists a neighborhood U of 6, on which 2 and } agree, then we
can find a neighborhood U’ C U of 8,, and a regular homotopy 2 joining 2 to
7 (i.e. a path in I,) such that 2, and 2 agree on U’ for 0 < s < 1.

Remark. This is a special case of Smale’s theorem and it admits a rather
easy elementary proof, by first applying the Whitney-Graustein theorem (8]

N,
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to the punctured sphere, and then ‘“‘cancelling” loops. By applying theorem
S we see that the following Theorem 1’ is equivalent to Theorem 1.

Theorem V. Let y and 7 e N,. Then y is based non-degenerately homo-
topic to 7 if and only if G(y) is based regularly homotopic to G(7).

If we are to prove I’, we have to know which closed spherical curves are
tangent indicatrices of closed space curves, This question is answered by
the following proposition of Fenchel [2], [3]. In the “if” part we will merely
sketch Loewner’s well known remarks [2]. In the “only if”” part Fenchel’s
argument is somewhat simplified by a remark of Sacksteder; we include this
proof because the argument is central in the proof of Theorem I".

Let us fix the following notation. If 4 is a subset of R®, let [4], 4°¢, A*
denote respectively the convex hull of A, the closure of 4, and the interior
of A.

Proposition 2.1. a) Let y(6) be a closed non-plane space curve of class
C¥(k > 1), and G(6) = 7'(6)/|7/(6)| the tangent map. Then 0 ¢ [{G(6) [0 e S*}T°.

b) Let A(6) be a closed curve of class C**(k>1) on S*C R If
0 e [{2(9) |6 € SY})¢ then A(6) is the tangent indicatrix of a closed C*, nonplane,
space curve,

Proof. a) Let P be a plane in R® which does not meet y. Then there
must be both a maximum and a minimum of the distance from P to y. If
Py = 7(65) is either a maximum or minimum point of this distance function,
then G(4,) is parallel to P and therefore G(4,.) lies on the great circle deter-
mined by the intersection of S$* with the plane parallel to P which passes
through the origin. The fact that we have both maxima and minima implies
that the set {G(f) |6 e S} meets both open hemispheres determined by the
aforementioned great circle.

b) Let A(6) be viewed as a periodic vector valued function of period 2z,
C be the vector space of real valued C= functions on §*, viewed as periodic
functions with period 2z, and P = {peC|p(f) > 0, 0 < 6 < 2z}. We note

that it suffices to find a p ¢ P such that f ~:p(ﬁ),l(ﬁ)dﬁ = 0, because we can
]
then set () = f *0(6)2(6)d6, and 7 will be the desired space curve.
]

Let K = {y ¢ R?| there exists p ¢ P such that y = f 2z,o(ﬁ),l(ﬁ)dﬁ}. We see
0

that K is a convex cone because P is such. At this point Sacksteder noticed
that it suffices to show {1(§)|0<6<2x} C K¢, because 0 e [{1(9) | 0<8 < 2x)T°,
and therefore O ¢ K provided the above inclusion holds. The remainder of the
argument is essentially Fenchel’s.

Let
e(l/x*—1) —1<x<1,

) X) =
#&) 0 elsewhere,
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where e(f) = ', Let b = f °Qg?a(,\c)clhxc; therefore we set ¢(x) = %g}(x). Pick

f, such that 0 <4, < 27:,_ and & such that 0 < 2z & < 1. We then define a
function £,(4, 6,) on an interval of length 2z
with 4, as midpoint as follows. f.(8, 8,)

=e+h¢(”;”*

) where & is so chosen

}E Oxt
PR 7 PR that f i 1:6,0,)d6 = 1. We extend f, to

fx—x

all of R by making it periodic of period 2z. f.(0,0,)eP. Let A (f,)
-_-fz”z(e)fe(e, 6,)d6. Then 2,(6,) K. Note that f “# =1 implies that
0

0

260 — 260 | = | [TT® — 100166, 6,040

0

Thus we see 2,(6,) — () as § — O by the continuity of 2 and the construc-
tion of f.. Hence i(6,) € K°.

We can prove Theorem I’, if we can carry out the following procedures.
First, let G, = G(7,) and G, = G(y,) be the tangent images of 7, and 7, e N,.
If G, and G, are regularly homotopic, does there exist a base regular homo-
topy G, joining G, to G, such that 0e [{G,(6)|0 <6 < 2z}]° for each s,
0 <s < 1? Second, if we have the desired homotopy G, above, can we find
a continuous l-parameter family of weighting functions p,eP such that

046,66 = 0 where (6) = 17:6)| and p,) = 11{(®))?

3. First deformations

From now on we will view all maps with S as source, as periodic maps of
period 2z with R as source.

Proposition 3.1. Let ye N, Then there exists a based non-degenerate
homotopy between y and an element 7 ¢ N,, where 7 has the following pro-
perty: For some parametrization t of y, we can find a number | > 0 depend-
ing on 7, such that G(3)(t) = (cos t, sin ¢, 0) for 0 < ¢t mod 2z < L.

Proof. Let us note that y is non-degenerate if and only if the vectors /(%)
and y”(?) are linearly independent for each i, 0 <t < 2z. By reparametrizing
r if necessary we can assume ¢/(0) = e,, and 7/(0) = |7”’(0)]e, where ¢, is
the unit vector in the i-th direction. If we let 7(¢) = (1.(2), 7:(8), 7:(9)), We see
that there exists a number [, > 0 such that if |¢| mod 2z < I, then the vectors
(ri(®), 74(®), ® and (77 (2), 77 (1), 0) are linearly independent. Let ¢(?) be a C=
periodic function of period 2z, such that ¢ () = 1 for 0 < |¢| mod 2z < [,/2,
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¢(f)=0for {t|mod 2z > I, and 0 < ¢ < 1. We define a based non-degene-
rate homotopy by the formula

7u(1) = (1), 1:(0), (1 — ug(@®)r()

such that 7,(t) = y(¢), and 7,(f) = y(®) for |¢| mod 2z > I.. Then 7,(f) ¢ N, by
our choice of L. Let 7(f) = r,(¢). For 0 < |t/ mod 2z < L/2, 7(¢) lies in the
(x, ¥) plane and has positive curvature. Hence we can reparametrize 7 so
that G(7)(¢) = (cos z, sin 7, 0) for 0 < |7 | mod 2z < [ for some [ > 0, which
depends upon 1.

Proposition 3.2. Let y(f) e Ny, and assume y lies in the (x,y) plane. Then
for an arbitrarily small £, 0 < & < z, v is based non-degenerately homotopic
to a nonplane curve 7, such that y(t) = 5(f) for 0 <|t{mod 2z < = — &.

2
Proof. Let gy(t) = { et/ 0 D, ;Sivi :rf 1, Extend %(’ — ”) [0, 2z

for 0 <& < = to all of R, by making it periodic of period 2z, and denote this
function by ¢. Let ¢(1): R —R by a C~ function, such that ¢(u) = 0 for
<0, ¢ =1for u>1and 0< ) < 1. Set 7.(8) = (1(9), 72(8), W (D).
Then 7,(?) = 7(¢) and define () = 7,(f). We thus see that 7,(¢) is the desired
non-degenerate homotopy.

Lemma 3.3. Let A(t) and y(¢) be in I, and assume that 2 and n are based
regularly homotopic and that

0¢ [{2()]0 < 1 < 22} N [0 0 < ¢ < 23)F .

Finally we assume that A(t) = 5(t) = (cost, sint, 0) for 0 < ¢t < I, for some
1, >0, I, < r. Then there exists a based regular homotopy 2,(t) joining 2 to
such that 0 e [{2,(0)]|0 <t < 2x}} for each u, 0 < u < 1.

Proof. First pick a regular homotopy v, () such that v, = 4, v, = 7, and
v, () = (cos t, sin ¢, 0) for 0 <t < where 0 <[ <,, and is determined by
Theorem S of §2. Let us look at the great circle ¢ which passes through

A _1-1 and the north pole. Let 2,(f) be a regular homotopy of immersions

240 Figure 1. 20
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of the interval {0, /] into $* which we will describe as follows. Let 2,(#)

= (cost,sint,0) for 0 < <L %l and for §4£ <t <1, and let 2y(?) = (cost,

sin¢, 0) for all z. Finally as « varies from 0 to 1 we pull out a long skinny

“bump”” which is symmetric about the great circle ¢, until finally at # = 1 the

bump has gone more than halfway around the circle ¢, as we see in figure 1.
We can now define the desired homotopy 2,(1).

['Qau(t) OSISZ Ogugi

A(?) | <t<2x 3

Zu(t):: [Ql(t) OSISZ _l_gug—z_
Vay-1(0) [ <t<2x 3 3
{Qa-au(t) 0Lt z_éusl
v (1) | <t< 2 3

This homotopy clearly has the correct properties as the long hump guarantees
the convexity property as we deform through the homotopy v,,.

4. Deforming the weighting functions

Let P = {pe C* (5, R) | p(f) > 0 for 0 < 4 < 2z}. If we give C*(S, R)
the C*-* topology, then P is an open convex cone. Denote C*-1(S*, R) by C.

Lemma 4.1. Let A, and 4, be non-plane elements of I, such that for some
120,061 <7, 2(0) = 4,(0) = (cos 8, sin 4, 0) = a(6). Assume further-
more that

0e[{4(6)|0 < 6 < 2z} N [{40) |0 < 6 < 2},

and that A, is based regularly homotopic to 2,. Pick p,(@)eP,i= 0,1, such
2z
that f 0:()2,(8)d6 = 0 for i =0, 1. We can then find a regular homotopy

0
2:00), 0 <w < 1, between 2, and 2, an interval [0, 1], 0 < I, <1, and a con-
tinuous path p,(0) € P (continuous as a map from [0, 1] into P) with the fol-
lowing properties: 2,(6) = (@) for 0 <w <1 and 6¢]0, 1], each 2,,(0) is

nonplaner, 0¢ [{1,(6)|0 < 6 < 2x})¢ for each w, and f (@) pu(6)d8 = O
Q

for each w.

Before proving Lemma 4.1 we note that this lemma and the results of §3
will imply theorem I’ as follows. Let %, and 7, € N,, and assume G(z,) is based
regularly homotopic to G(7,). By applying Propositions 3.1 and 3.2 we can
find curves y; € Ny, i = 0, 1, such that , is based non-degenerately homotopic
to 74, i = 0, 1, and such that the curves 1; = G(7,), i = 0, 1, have the prop-
erties of the A; of Lemma 4.1. Let p,(8) = |749)|, and 4,(0) and p,(6) be
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the regular homotopy and path of weighting functions determined by Lemma

4.1. We then set 7,,(t) = f 1,(6) po(6)d6 which determines the desired path
0

in N,.

Proof of Lemma 4.1. By Lemma 3.3 we can find a based regular homo-
topy 2.(f) joining 2, to 1,, and an interval [0, ;], 0 <<l <I, such that
0¢e[{2,060)|0 < 0 < 27}]* for each fixed u, and such that 1,(6) = «(f) for
0e[0,4],0 <u<1. Let L=L%*S5", R) denote the space of square integrable
periodic real-valued functions, and write 2,(0)=(241(0), 44, 2(6), 14, 4(6)). For
each fixed j, 4,,,¢ C C L, and in fact 1, ,, 2, and 1, , are linearly indepen-
dent elements of L as well as of C, for each u. We will now adopt the follow-

ing notation. If x(6) and y(6) € C we will set {(x(6), ¥(6)> = J‘zzx(ﬁ)y(ﬁ)dﬁ. We

will suppress the circle variable ¢, and we will write ZZ, (6) as 2;(u) for
1<j<3, and p;(6) as p(@) for i = 1,2. Hence we are given three continu-
ous curves i;(#) in C, which for each fixed u, determines 3 elements linearly
independent in both C and L. Therefore we want to find a curve p(u) in P
joining p(0) to p(1) such that {p(u), 2;(u)> = 0 for j = 1,2 and 3.

By the Gram-Schmidt process we can replace the curves (1;(1)), 1 <j < 3,
by curves (u;(w)), 1 <j< 3, such that (g, (u), p;(u)) = §;;for 1 <i<Lj<3,
and such that for each u, 4,(%), p,(u) and g,(4) span the same subspace of C
as A,(u), ,(v) and 2 (u). Hence {p, 3;(4)> =0, 1 <j<3, if and only if
<o, ps(w)y = 0,1 < j < 3. Therefore it suffices to find a curve p(u) in P join-
ing p(0) to p(1) such that {p(u), ¢;(u)> = 0,1 < j< 3. For each v¢[0, 1]
let us pick by Proposition 2.1 an element p,eP such that {p,, #;(v))
=0,1<j<3, and such that p,= p(0) and p, = p(1). Let p,(4) = p,

— i (1), poyps (). We see that (p,(u), p(u)> = 0 for 1 <j < 3. We also
i=1

see that there exists a real number ¢, > 0 depending upon p,, such that if
lu —v| <e, then p(w)eP. Let I, = {u] ju — v| <e¢,}. The I, form an open
covering of [0, 1], and therefore there exists a finite subcovering I, - - -1,,. If
I, is not in this list throw it in. Hence by relabeling these intervals if neces-
sary, we can find a sequence of intervals I, - - -, I,, where I, =, , and
points 0 = u_; <uy < ... <uy, <uy,=1 with the following properties:
Iy=1, u,el, NI, and 1el,. Therefore [0, u,] 1, [u, u] <1y, ---,
[z, k] S 1y and [u,_,, 11 S ;. Let p,(u) = p,,(4) be the curve in P
defined by p,, on the interval I, = I, , and reparametrize the curves p;(u)
as follows :

(W) = {ﬂj(un—l +2W — Upy) for u, , <w<u, , + F(Un — Up_y)
# stt) BOT Uy 4 3ty — U ) SWS s, 0<n<k.

Let us formally set p;.,(u;) = pi.1(1) = p(1). We then define p(w) by the
formulas :
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pnlltn_y + 2(w — u, )} for u,, <w<u, 4+ U, — Uy,

un _ un—l

2ty — 2w —
—u + Pn+1(un) ld
Up — Up_y n— Un_4

for u, s + 3ty — thy) KWL Uy

B (Un)

Note that the above second formula is a convex sum, and therefore repre-
sents a line in P joining p.(U.) tO pn.,,(i,). Hence p(w) is a continuous path
in P. Finally we see that < p(w), u;(w)> = 0 for 1 <j < 3 because this is
true for u,_, <w < u,_, + (4, — u,_,), and because

<,Uj(un)> Pn(un)> = <,uj(un)’ Pn+1(un)> =0 for 1<j<L3
implies
< i)y 1o (Un) + (1 — 8)ppaa(u)> =0 for0<r<1,and 1 <j< 3.

This completes our proof.
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